Publications

Peer-reviewed journal papers and books

2024

[17] C. Scheidt, L. Mathieu, Z. Yin, L. Wang, J. Caers, Masked Autoregressive Flow for Geochemical Anomaly Detection with Application to Li–Cs–Ta Pegmatites Exploration of the Superior Craton, Canada, Natural Resources Research, 2024

[16] T. Babey, Z. Perzan, S. Pierce, D.B. Rodgers, L. Wang, R. Carroll, J.R. Bargar, K. Boye, K. Maher, Mountainous Floodplain Connectivity in Response to Hydrological Transitions, Water Resources Research, 2024

[15] T. Kurihana, I. Mastilovic, L. Wang, A. Meray, S. Praveen, Z. Xu, M. Memarzadeh, A. Lavin, H. Wainwright, Identifying climate patterns using clustering autoencoder techniques, Artificial Intelligence for the Earth Systems, 2024

[14] X. Wei, Z. Yin, C. Scheidt, K. Darnell, L. Wang, J. Caers, Constructing priors for geophysical inversions constrained by surface and borehole geochemistry, Surveys in Geophysics, 2024

[13] A. Ayoub, H. Wainwright, L. Wang, G. Sansavini, An enhanced fourier neural operator surrogate for radioactive plume transport forecasting, Stochastic Environmental Research and Risk Assessment, 2024.

[12] A. Meray, L. Wang, T. Kurihana, I. Mastilovic, S. Praveen, Z. Xu, M. Memarzadeh, A. Lavin, H. Wainright Physics-informed surrogate modeling for supporting climate resilience at groundwater contamination sites, Computers & Geosciences, 2024

Meray and Wang are co-first authors.

2023

[11] L. Wang, Z. Yin, J. Caers, Data Science for the Geosciences, Cambridge University Press, 2023

[10] L. Wang, L. Peeters, E.J. MacKie, Z. Yin, J. Caers, Unraveling the uncertainty of geological interfaces through data-knowledge-driven trend surface analysis, Computers & Geosciences, 2023

[9] E.J. MacKie, M. Field, L. Wang, Z. Yin, N. Schoedl, M. Hibbs, A. Zhang, GStatSim V1.0: a Python package for geostatistical interpolation and simulation, Geoscientific Model Development, 2023

[8] L. Wang, H. Kim, A. V. Christiansen, B. Hansen, J. Caers, Statistical modeling of 3D redox architecture from non-colocated redox borehole and transient electromagnetic data, Hydrogeology Journal (SI: Geostatistics and Hydrogeology), 2023

[7] L. Wang, F. Joncour, P. Barrallon, T. Harribey, L. Castanie, S. Yousfi, S. Guillon, Semi-supervised semantic segmentation for seismic interpretation, Geophysics, 2023

2022

[6] T. Hall, C. Scheidt, L. Wang, Z. Yin, T. Mukerji, J. Caers, Sequential value of information for subsurface exploration drilling, Natural Resources Research, 2022

[5] L. Wang, P. Kitanidis, J. Caers, Hierarchical Bayesian inversion of global variables and large-scale spatial fields, Water Resources Research, 2022

[4] J. Caers, C. Scheidt, Z. Yin, L. Wang, T. Mukerji, K. House, Efficacy of information in mineral exploration drilling, Natural Resources Research, 2022

2021

[3] A. Miltenberger, S. Uhlemann, T. Mukerji, K. Williams, B. Dafflon, L. Wang, H. Murakami-Wainwright, Probabilistic evaluation of geoscientific hypotheses with geophysical data: application to electrical resistivity imaging of a fractured bedrock zone, Journal of Geophysical Research - Solid Earth, 2021

[2] E. C. Johnston, F. Davenport, L. Wang, J. Caers, S. Muthukrishnan, M. Burke, N. S. Diffenbaugh, Quantifying the influence of precipitation intensity on landslide hazard in urbanized and non-urbanized areas, Geophysical Research Letters, 2021

[1] Q. Li, L. Wang, Z. Perzan, J. Caers, G. Brown, J. Bargar, K. Maher, Global sensitivity analysis of a reactive transport model for mineral scale formation during hydraulic fracturing, Environmental Engineering Science, 2021

Conference proceedings

[2] L. Wang, T. Kurihana, A. Meray, I. Mastilovic, S. Praveen, Z. Xu, M. Memarzadeh, A. Lavin, H. Murakami-Wainwright, Multi-scale Digital Twin: Developing a fast and physics-infused surrogate model for groundwater contamination with uncertain climate models, Machine Learning and the Physical Sciences Workshop at the 36th conference on Neural Information Processing Systems, 2022

[1] R. M. Rustowicz, R. Cheong, L. Wang, S. Ermon, M. Burke, D. Lobell, Semantic segmentation of crop type in Africa: A novel dataset and analysis of deep learning methods, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019