Lijing Wang CONTACT INFORMATION $\begin{array}{c} (650)\ 644\text{-}5089 \\ \text{lijingwang.github.io} \end{array}$ lijingwang@lbl.gov, lijing.wang@uconn.edu ORCID: 0000-0001-8121-5465 #### **EDUCATION** #### Stanford University Ph.D. in Earth and Planetary Sciences 2017/09 - 2023/03 $({\bf Formerly\ Geological\ Sciences})$ Ph.D. minor in Computer Science 2021/09 - 2023/03 Dissertation title: Integrating data and models for sustainable decision-making in hydrology Committee: Jef Caers (Primary advisor), Kate Maher, Tapan Mukerji, Peter Kitanidis, Mykel Kochenderfer ## **Peking University** B.S. in Space Physics and Applied Mathematics 2013/09 - 2017/07 ## Hong Kong University of Science and Technology Physics, exchange program with a full-tuition scholarship 2014/09 - 2014/12 # Professional Experience ## Lawrence Berkeley National Laboratory (LBNL) Postdoctoral Fellow, Climate & Ecosystem Science Division 2023/04 - present #### University of Connecticut Assistant Professor, Department of Earth Sciences expected 2024/08 ## RESEARCH INTERESTS Model-data integration for hydrology, machine learning-based inverse methods, data science for geosciences, stochastic geomodeling, non-stationary geostatistics, decision making for uncertain hydrologic systems #### BOOKS [1] L. Wang, Z. Yin, J. Caers, Data Science for the Geosciences, Cambridge University Press, 2023 ## JOURNAL PUBLICATIONS [12] L. Wang, Z. Perzan, T. Babey, M. Briggs, S. Pierce, B. Rogers, J. Bargar, K. Maher, Revealing Beavers' Influence on Flow Dynamics: Hydrologic Modeling and Calibration in an Intermountain Floodplain Aquifer, 2023 (in prep.) [11] A. Miltenberger, L. Wang, T. Mukerji, J. Caers, Formulating and Solving the Data-Consistent Geophysical Inverse Problem for Subsurface Modeling Applications, EarthArXiv, 2023 [10] L. Wang, L. Peeters, E.J. MacKie, J. Caers, Unraveling the uncertainty of geological interfaces through data-knowledge-driven trend surface analysis, *Computers & Geosciences*, 2023 (under review) - [9] E.J. MacKie, M. Field, L. Wang, Z. Yin, N. Schoedl, M. Hibbs, A. Zhang, GStatSim V1.0: a Python package for geostatistical interpolation and simulation, Geoscientific Model Development, 2023 - [8] L. Wang, H. Kim, A. V. Christiansen, B. Hansen, J. Caers, Statistical modeling of 3D redox architecture from non-colocated redox borehole and transient electromagnetic data, *Hydrogeology Journal*, 2023 (accepted, in press, SI: Geostatistics and Hydrogeology) - [7] L. Wang, F. Joncour, P. Barrallon, T. Harribey, L. Castanie, S. Yousfi, S. Guillon, Semi-supervised semantic segmentation for seismic interpretation, *Geophysics*, 2023 - [6] T. Hall, C. Scheidt, L. Wang, Z. Yin, T. Mukerji, J. Caers, Sequential value of information for subsurface exploration drilling, *Natural Resources Research*, 2022 - [5] L. Wang, P. Kitanidis, J. Caers, Hierarchical Bayesian inversion of global variables and large-scale spatial fields, *Water Resources Research*, 2022 - [4] J. Caers, C. Scheidt, Z. Yin, L. Wang, T. Mukerji, K. House, Efficacy of information in mineral exploration drilling, *Natural Resources Research*, 2022 - [3] A. Miltenberger, S. Uhlemann, T. Mukerji, K. Williams, B. Dafflon, L. Wang, H. Murakami-Wainwright, Probabilistic evaluation of geoscientific hypotheses with geophysical data: application to electrical resistivity imaging of a fractured bedrock zone, Journal of Geophysical Research Solid Earth, 2021 - [2] E. C. Johnston, F. Davenport, L. Wang, J. Caers, S. Muthukrishnan, M. Burke, N. S. Diffenbaugh, Quantifying the influence of precipitation intensity on landslide hazard in urbanized and non-urbanized areas, *Geophysical Research Letters*, 2021 - [1] Q. Li, L. Wang, Z. Perzan, J. Caers, G. Brown, J. Bargar, K. Maher, Global sensitivity analysis of a reactive transport model for mineral scale formation during hydraulic fracturing, *Environmental Engineering Science*, 2021 # Conference Publications - [2] L. Wang, T. Kurihana, A. Meray, I. Mastilovic, S. Praveen, Z. Xu, M. Memarzadeh, A. Lavin, H. Murakami-Wainwright, Multi-scale Digital Twin: Developing a fast and physics-infused surrogate model for groundwater contamination with uncertain climate models, *Machine Learning and the Physical Sciences Workshop at the 36th conference on Neural Information Processing Systems*, 2022 - [1] R. M. Rustowicz, R. Cheong, L. Wang, S. Ermon, M. Burke, D. Lobell, Semantic segmentation of crop type in Africa: A novel dataset and analysis of deep learning methods, *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops*, 2019 | Invited | Talks | |---------|-------| | | | | University of Arizona Department of Hydrology and Atmospheric | $\mathrm{Apr}\ 2023$ | |---|----------------------| | Sciences Seminar | | | ${\bf SLAC}$ National Accelerator Laboratory Environmental Geochemistry Group Research Talk | | | University of Connecticut Department of Earth Sciences Seminar | Feb 2023 | | University of Florida Department of Geological Sciences Seminar | Jan 2023 | # TEACHING AND MENTORING # Data Science for Geoscience (GEOLSCI 6, GEOLSCI 240) Teaching Assistant, Stanford University 2019 - 2022 - \bullet Taught both graduate level (~ 40 students) and undergraduate level (~ 15 students) classes - Developed new course materials including geoscientific data case studies, python notebooks and homework - Mentored students to apply data science tools to their own geoscientific problems - Designed a new textbook: Data Science for the Geosciences ## Data Science for Social Good Summer Program Technical Mentor, Stanford Data Science, Stanford University Summer 2021 - Mentored three student fellows: one graduate and two undergraduate students - Technical mentor for the project: Measuring spatial-temporal change of physical conditions in neighborhoods with street view imagery - Designed computer vision tutorials for student fellows - Organized guest seminars for student fellows | SERVICE | Reviewer for: Water Resources Research, Advanced in Water Resources, Hydrogeology Journal, Mathematical Geosciences, Scientific Reports Session chair/primary convener: Advances in Data Assimilation and Uncertainty Quantification of Water Resources Management, AGU Fall Meeting Stanford Data Science Scholar Blog: Introduction to Spatial Data Analysis | 2022, 2023
2022 | |------------|--|--------------------| | | Student DEI leader representative, Stanford Earth | 2021 - 2022 | | | Graduate panelist for Stanford Earth IDEAL (Inclusion, Diversity, Equity, and Access) faculty search | 2021 | | | Co-president in Association of Chinese Students and Scholars at Stanford | 2019 - 2020 | | | Student organizing committee, Women in Data Science (WiDS) at Stanford Earth | 2019 | | Honors and | Outstanding Graduate Student Award | 2023 | | AWARDS | - In recognition of exceptional scholarship and research accomplishments in the Department of Earth and Planetary Sciences "Unexpected Discovery" Innovation Award, Frontier Development Lab | 2022 | | | - using sensitivity analysis to improve physical simulations' accuracy | | | | Stanford Data Science Scholars Program Fellowship (\$100,000) | 2020 - 2022 | | | - among 11 chosen out of 151 applicants | | | | - awarded to Stanford Ph.D. students who are involved in the | | | | challenging use of data science at the frontiers of their research | | | | Geological Sciences Department Travel Fund 2022 | 2022 | | | Society for Industrial and Applied Mathematics (SIAM) Travel Awards | 2021 | | | Geological Sciences Department Travel Fund 2021 | 2021 | | | Harriet Benson Fellowship Award (\$5,000) | 2020 | | | - honors exceptional scholarship and research accomplishments by | | | | graduate students in the Department of Geological Sciences | | | | 2nd Prize in Stanford Big Earth Hackathon | 2018 | | | Meritorious in COMAP's Mathematical Contest in Modeling | 2016 | | | Houston BAA Scholarship | 2016 | | | Guanghua Scholarship | 2014, 2015 | | | Dean's list in School of Science, HKUST | 2014 | | | | | # PRESENTATION AND POSTER [18] L. Wang, T. Kurihana, A. Meray, I. Mastilovic, S. Praveen, Z. Xu, M. Memarzadeh, A. Lavin, H. Murakami-Wainwright, Physics-informed surrogate modeling for supporting climate resilience at groundwater contamination sites, *HydroML 2023 symposium* [Plenary eLightning Talk] [17] L. Wang, C. Scheidt, Z. Yin, K. Maher, J. Caers, Parameter inversion with sequential neural density estimators: an enhanced machine learning-based inversion, *American Geophysical Union, Fall Meeting 2022* [Poster] - [16] L. Wang, T. Kurihana, A. Meray, I. Mastilovic, S. Praveen, Z. Xu, M. Memarzadeh, A. Lavin, H. Murakami-Wainwright, Physics-informed surrogate modeling for supporting climate resilience at groundwater contamination sites, *American Geophysical Union, Fall Meeting 2022* [Poster] - [15] E.J. MacKie, L. Wang, Z. Yin, A. Zhang, N. Schoedl, GlacierStats geostatistical software for modeling ice sheet conditions, *American Geophysical Union*, Fall Meeting 2022 [Poster] - [14] Q. Li, K. Maher, L. Wang, J. Caers, A shale-water interaction model and its sensitivity to each input parameter over the entire domain, *American Geophysical Union*, Fall Meeting 2022 [Oral] - [13] L. Wang, T. Kurihana, A. Meray, I. Mastilovic, S. Praveen, Z. Xu, M. Memarzadeh, A. Lavin, H. Murakami-Wainwright, Multi-scale Digital Twin: Developing a fast and physics-infused surrogate model for groundwater contamination with uncertain climate models, *Machine Learning and the Physical Sciences Workshop at the 36th conference on Neural Information Processing Systems* [Poster] - [12] L. Wang, T. Kurihana, A. Meray, I. Mastilovic, S. Praveen, Z. Xu, M. Memarzadeh, A. Lavin, H. Murakami-Wainwright, Physics-informed surrogate modeling for supporting climate resilience at groundwater contamination sites, *Frontier Development Lab 2022 Live Showcase* [Oral] - [11] L. Wang, Z. Perzan, T. Babey, M. Briggs, S. Pierce, B. Rogers, J. Bargar, K. Maher, Uncertainty quantification of water exchanges due to beaver-induced inundation, *American Geophysical Union*, Fall Meeting 2021 [Oral] - [10] E.J. MacKie, L. Wang, D.M. Schroeder, C. Zuo, Z. Yin, J. Caers, M. Hibbs, The parallel worlds of DEMOGORGN Greenland, *American Geophysical Union, Fall Meeting 2021* [Oral] - [9] T. Babey, Z. Perzan, B. Rogers, L. Wang, S. Pierce, J. Bargar, K. Maher, Hydro-biogeochemical response of oxic-anoxic interfaces to beaver dam construction in a simulated floodplain aquifer, *American Geophysical Union, Fall Meeting 2021* [Poster] - [8] L. Wang, L. Peeters, J. Caers, Quantifying uncertainty of non-stationary geological interfaces: Metropolis-Hasting sampling of implicit level sets, SIAM Conference on Mathematical & Computational Issues in the Geosciences, 2021 [Oral] - [7] L. Wang, T. N. Vilhelmsen, J. Caers, Local decision making through understanding of multi-scale uncertainty: Application to well catchment protections in Denmark Computational Methods in Water Resources, 2020 [Oral] - [6] L. Wang, L. Peeters, J. Caers, Uncertainty assessment of hydrogeological structures combining geophysical survey and geological knowledge: A stochastic level set optimization framework, *American Geophysical Union*, Fall Meeting 2020 [Oral] - [5] L. Wang, T. N. Vilhelmsen, J. Caers, Direct forecasting of local hydraulic conductivity using combined geophysical and hydrological data: Application to well catchment predictions in Danish aquifer system, *American Geophysical Union, Fall Meeting* 2019 [Poster] - [4] L. Wang, T. N. Vilhelmsen, J. Caers, Joint Uncertainty Quantification on Spatial and Global Hydrogeological Models: An Application to Danish Groundwater Management, *American Geophysical Union*, Fall Meeting 2018 [Poster] - [3] E. C. Johnston, J. Caers, L. Wang, F. Davenport, S. Muthukrishnan, N. S. Diffenbaugh, Multi-scale signatures of climate change on landslide susceptibility: a case study for the Pacific Coast of the United States, *American Geophysical Union*, Fall Meeting 2018 [Poster] - [2] L. Wang, O. Grujic, J. Caers, Reconstruction and Forecasting Oil Rates Using Functional Data Analysis and Universal Co-Kriging, NGI Industrial Affiliates Meeting, Stanford University, 2017 [Poster] - [1] L. Wang, O. Grujic, J. Caers, Statistical Learning on Incomplete Production Profiles of Unconventional Reservoirs, NGI Industrial Affiliates Meeting, Stanford University, 2016 [Poster] ## Industrial Experience # Data Science Intern, TotalEnergies Summer 2020 - AI & Geosciences Program based in Google Cloud Advanced Solutions Lab - Developed a semi-supervised learning framework to optimize geophysical data interpretation with limit labels - Quantified uncertainty of the semi-supervised learning framework in order to do active learning and help experts' sequential geophysical interpretations SKILLS Programming languages: Python, R, MATLAB, C/C++ Deep Learning Framework: TensorFlow, Keras, PyTorch Other Software: LATEX, Git, Jupyter Notebook, Google Cloud, Azure