Lijing Wang

CONTACT Information $\begin{array}{c} (650)\ 644\text{-}5089 \\ \text{lijingwang.github.io} \end{array}$

lijing 52@stanford.edu

ORCID: 0000-0001-8121-5465

EDUCATION

Stanford University

Ph.D. in Earth and Planetary Sciences, advised by Prof. Jef Caers

Ph.D. minor in Computer Science

2021 - 2023

Thesis: Data-driven modeling and inference of hydrologic systems towards sustainable water management

Peking University

B.S. in Space Physics and Applied Mathematics

2013 - 2017

2014

Hong Kong University of Science and Technology

Physics, exchange program with a full-tuition scholarship, Dean's list

RESEARCH INTERESTS

Data science for geosciences, machine learning-based inverse modeling, stochastic geomodeling, non-stationary geostatistics, sustainable water management

RESEARCH EXPERIENCE

Bayesian inversion methods for earth observation data

2018 - present

With J. Caers (Stanford), P. Kitanidis (Stanford)

- Used hierarchical Bayesian framework for complex earth model parameterization
- Developed machine learning-based inversion for non-linear inversion problem
- Developed local principal component analysis method to perform inversion with local data (i.e. borehole measurements)

Quantifying water exchanges uncertainty of floodplain

2021 - present

- With K. Maher (Stanford), J. Caers (Stanford)
 - Built a hydrologic modeling workflow and assimilated water head measurements and hydraulic gradient
 - Performed sensitivity analysis to understand driven factors for floodplain water exchanges
 - Used data science to understand hydrobiogeochemical processes

Fast climate resilience assessment of groundwater contami- 2022 - present nation

With H. Wainwright (MIT), Z. Xu (Lawrence Berkeley National Lab)

- Developed a deep learning surrogate model for groundwater flow and contaminant transport
- Combined both data-driven factors and physical boundary constraints (physics-informed neural network) in loss functions

 Provided a fast and reliable assessment for site managers: how contaminant concentration changes spatial-temporally under different future climate projections

Statistical modeling of 3D redox architectures

2018 - present

With Geological Survey of Denmark and Greenland, HydroGeophysics Group in Aarhus U

- Used geostatistics and statistical learning to predict 3D redox architecture given geophysical EM survey and redox boreholes. A 3D redox architecture is essential for a more accurate and effective targeted nitrogen regulation
- Identified statistically important geological structures for redox conditions

Data-driven geological interface modeling

2019 - present

With J. Caers (Stanford), E.J. MacKie (U of Florida), L. Peeters (CSIRO)

- Developed a new implicit optimization method for uncertain inference modeling
- Combined geological constraints and data-driven losses
- Applied to 1) bed topography simulation in Greenland 2) palaeovalley modeling in Australia

Sequential mineral exploration planning

2021 - present

With J. Caers (Stanford)

- Built a fast inversion workflow for sequential mineral exploration planning
- Generated uncertain ore bodies using implicit level set methods

BOOKS

[1] L. Wang, Z. Yin, J. Caers, Data Science for the Geosciences, *Cambridge University Press*, 2022 (in press)

JOURNAL PUBLICATIONS

- [11] L. Wang, Z. Perzan, T. Babey, M. Briggs, S. Pierce, B. Rogers, J. Bargar, K. Maher, Uncertainty quantification of water exchanges due to beaver-induced inundation, 2023 (in prep.)
- [10] L. Wang, L. Peeters, E.J. MacKie, J. Caers, Data-driven stochastic optimization for interface modeling, 2023 (in prep.)
- [9] E.J. MacKie, M. Field, L. Wang, Z. Yin, N. Schoedl, M. Hibbs, A. Zhang, GStatSim V1.0: a Python package for geostatistical interpolation and simulation, Geoscientific Model Development, 2022 (under review)
- [8] L. Wang, H. Kim, A. V. Christiansen, B. Hansen, J. Caers, Statistical modeling of 3D redox architecture from non-colocated redox borehole and transient electromagnetic data, *Hydrogeology Journal*, 2022 (under review, SI: Geostatistics and Hydrogeology)
- [7] L. Wang, P. Kitanidis, J. Caers, Hierarchical Bayesian inversion of global variables and large-scale spatial fields, *Water Resources Research*, 2022

- [6] L. Wang, F. Joncour, P. Barrallon, T. Harribey, L. Castanie, S. Yousfi, S. Guillon, Semi-supervised semantic segmentation for seismic interpretation, *Geophysics*, 2022 (under review)
- [5] T. Hall, C. Scheidt, L. Wang, Z. Yin, T. Mukerji, J. Caers, Sequential value of information for subsurface exploration drilling, *Natural Resources Research*, 2022
- [4] J. Caers, C. Scheidt, Z. Yin, L. Wang, T. Mukerji, K. House, Efficacy of information in mineral exploration drilling, *Natural Resources Research*, 2022
- [3] A. Miltenberger, S. Uhlemann, T. Mukerji, K. Williams, B. Dafflon, L. Wang, H. Murakami-Wainwright, Probabilistic evaluation of geoscientific hypotheses with geophysical data: application to electrical resistivity imaging of a fractured bedrock zone, Journal of Geophysical Research Solid Earth, 2021
- [2] E. C. Johnston, F. Davenport, L. Wang, J. Caers, S. Muthukrishnan, M. Burke, N. S. Diffenbaugh, Quantifying the influence of precipitation intensity on landslide hazard in urbanized and non-urbanized areas, *Geophysical Research Letters*, 2021
- [1] Q. Li, L. Wang, Z. Perzan, J. Caers, G. Brown, J. Bargar, K. Maher, Global sensitivity analysis of a reactive transport model for mineral scale formation during hydraulic fracturing, *Environmental Engineering Science*, 2021

Conference Publications

- [2] L. Wang, T. Kurihana, A. Meray, I. Mastilovic, S. Praveen, Z. Xu, M. Memarzadeh, A. Lavin, H. Murakami-Wainwright, Multi-scale Digital Twin: Developing a fast and physics-infused surrogate model for groundwater contamination with uncertain climate models, *Machine Learning and the Physical Sciences Workshop at the 36th conference on Neural Information Processing Systems*, 2022
- [1] R. M. Rustowicz, R. Cheong, L. Wang, S. Ermon, M. Burke, D. Lobell, Semantic segmentation of crop type in Africa: A novel dataset and analysis of deep learning methods, *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops*, 2019

TEACHING AND MENTORING

Data Science for Geoscience (GEOLSCI 6, GEOLSCI 240)

Teaching Assistant, Stanford University

2019 - 2022

- \bullet Taught both graduate level (~ 40 students) and undergraduate level (~ 15 students) classes
- Developed new course materials including geoscientific data case studies, python notebooks and homework
- Mentored students to apply data science tools to their own geoscientific problems
- Designed a new textbook: Data Science for the Geosciences

Data Science for Social Good Summer Program

Technical Mentor, Stanford Data Science, Stanford University

Summer 2021

• Mentored three student fellows: one graduate and two undergraduate students

- Technical mentor for the project: Measuring spatial-temporal change of physical conditions in neighborhoods with street view imagery
- Designed computer vision tutorials for student fellows
- Organized guest seminars for student fellows

Honors and Awards

"Unexpected Discovery" Innovation Award, Frontier Development Lab	2022
- using sensitivity analysis to improve physical simulations' accuracy	
Stanford Data Science Scholars Program Fellowship (\$100,000)	2020 - 2022
- among 11 chosen out of 151 applicants	
- awarded to Stanford Ph.D. students who are involved in the	
challenging use of data science at the frontiers of their research	
Geological Sciences Department Travel Fund 2022	2022
Society for Industrial and Applied Mathematics (SIAM) Travel Awards	2021
Geological Sciences Department Travel Fund 2021	2021
Harriet Benson Fellowship Award (\$5,000)	2020
- honors exceptional scholarship and research accomplishments by	
graduate students in the Department of Geological Sciences	
2nd Prize in Stanford Big Earth Hackathon	2018
Meritorious in COMAP's Mathematical Contest in Modeling	2016
Houston BAA Scholarship	2016
Guanghua Scholarship	2014, 2015
Dean's list in School of Science, HKUST	2014

Presentation and Poster

- [17] L. Wang, C. Scheidt, Z. Yin, K. Maher, J. Caers, Parameter inversion with sequential neural density estimators: an enhanced machine learning-based inversion, *American Geophysical Union, Fall Meeting 2022* [Poster]
- [16] L. Wang, T. Kurihana, A. Meray, I. Mastilovic, S. Praveen, Z. Xu, M. Memarzadeh, A. Lavin, H. Murakami-Wainwright, Physics-informed surrogate modeling for supporting climate resilience at groundwater contamination sites, *American Geophysical Union*, Fall Meeting 2022 [Poster]
- [15] E.J. MacKie, L. Wang, Z. Yin, A. Zhang, N. Schoedl, GlacierStats geostatistical software for modeling ice sheet conditions, *American Geophysical Union*, Fall Meeting 2022 [Poster]
- [14] Q. Li, K. Maher, L. Wang, J. Caers, A shale-water interaction model and its sensitivity to each input parameter over the entire domain, *American Geophysical Union, Fall Meeting 2022* [Oral]
- [13] L. Wang, T. Kurihana, A. Meray, I. Mastilovic, S. Praveen, Z. Xu, M. Memarzadeh, A. Lavin, H. Murakami-Wainwright, Multi-scale Digital Twin: Developing a fast and physics-infused surrogate model for groundwater contamination with uncertain cli-

- mate models, Machine Learning and the Physical Sciences Workshop at the 36th conference on Neural Information Processing Systems [Poster]
- [12] L. Wang, T. Kurihana, A. Meray, I. Mastilovic, S. Praveen, Z. Xu, M. Memarzadeh, A. Lavin, H. Murakami-Wainwright, Physics-informed surrogate modeling for supporting climate resilience at groundwater contamination sites, *Frontier Development Lab 2022 Live Showcase* [Oral]
- [11] L. Wang, Z. Perzan, T. Babey, M. Briggs, S. Pierce, B. Rogers, J. Bargar, K. Maher, Uncertainty quantification of water exchanges due to beaver-induced inundation, *American Geophysical Union, Fall Meeting 2021* [Oral]
- [10] E.J. MacKie, L. Wang, D.M. Schroeder, C. Zuo, Z. Yin, J. Caers, M. Hibbs, The parallel worlds of DEMOGORGN Greenland, *American Geophysical Union, Fall Meeting 2021* [Oral]
- [9] T. Babey, Z. Perzan, B. Rogers, L. Wang, S. Pierce, J. Bargar, K. Maher, Hydro-biogeochemical response of oxic-anoxic interfaces to beaver dam construction in a simulated floodplain aquifer, *American Geophysical Union, Fall Meeting 2021* [Poster]
- [8] L. Wang, L. Peeters, J. Caers, Quantifying uncertainty of non-stationary geological interfaces: Metropolis-Hasting sampling of implicit level sets, SIAM Conference on Mathematical & Computational Issues in the Geosciences, 2021 [Oral]
- [7] L. Wang, T. N. Vilhelmsen, J. Caers, Local decision making through understanding of multi-scale uncertainty: Application to well catchment protections in Denmark Computational Methods in Water Resources, 2020 [Oral]
- [6] L. Wang, L. Peeters, J. Caers, Uncertainty assessment of hydrogeological structures combining geophysical survey and geological knowledge: A stochastic level set optimization framework, *American Geophysical Union*, Fall Meeting 2020 [Oral]
- [5] L. Wang, T. N. Vilhelmsen, J. Caers, Direct forecasting of local hydraulic conductivity using combined geophysical and hydrological data: Application to well catchment predictions in Danish aquifer system, *American Geophysical Union*, Fall Meeting 2019 [Poster]
- [4] L. Wang, T. N. Vilhelmsen, J. Caers, Joint Uncertainty Quantification on Spatial and Global Hydrogeological Models: An Application to Danish Groundwater Management, *American Geophysical Union, Fall Meeting 2018* [Poster]
- [3] E. C. Johnston, J. Caers, L. Wang, F. Davenport, S. Muthukrishnan, N. S. Diffenbaugh, Multi-scale signatures of climate change on landslide susceptibility: a case study for the Pacific Coast of the United States, *American Geophysical Union*, Fall Meeting 2018 [Poster]
- [2] L. Wang, O. Grujic, J. Caers, Reconstruction and Forecasting Oil Rates Using

Functional Data Analysis and Universal Co-Kriging, NGI Industrial Affiliates Meeting, Stanford University, 2017 [Poster]

[1] L. Wang, O. Grujic, J. Caers, Statistical Learning on Incomplete Production Profiles of Unconventional Reservoirs, NGI Industrial Affiliates Meeting, Stanford University, 2016 [Poster]

SERVICE

Reviewer for: Water Resources Research, Advanced in Water Resources, Hydrogeology Journal, Mathematical Geosciences, Scientific Reports Session chair/primary convener: Advances in Data Assimilation and 2022 Uncertainty Quantification of Water Resources Management, AGU Fall Meeting Stanford Data Science Scholar Blog: Introduction to Spatial Data Anal-2022 ysis Student DEI leader representative, Stanford Earth 2021 - 2022 Graduate panelist for Stanford Earth IDEAL (Inclusion, Diversity, Eq-2021 uity, and Access) faculty search Co-president in Association of Chinese Students and Scholars at Stanford 2019 - 2020 Student organizing committee, Women in Data Science (WiDS) at Stan-2019 ford Earth

Industrial Experience

Data Science Intern, TotalEnergies

Summer 2020

- AI & Geosciences Program based in Google Cloud Advanced Solutions Lab
- Developed a semi-supervised learning framework to optimize geophysical data interpretation with limit labels
- Quantified uncertainty of the semi-supervised learning framework in order to do active learning and help experts' sequential geophysical interpretations

SKILLS

Programming languages: Python, R, MATLAB, C/C++
Deep Learning Framework: TensorFlow, Keras, PyTorch
Other Software: LaTeX, Git, Jupyter Notebook, Google Cloud, Azure

6